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1. Binary quadratic forms

An integral binary quadratic form is f(x, y) = ax2 + bxy + cy2 with
a, b, c ∈ Z. We also denote f = [a, b, c].

The associated symmetric matrix Mf so that

f(x, y) = (x, y) ·Mf ·
(
x
y

)
is

Mf =

(
a b/2
b/2 c

)
.

We say that f is primitive if gcd(a, b, c) = 1.
Such a form represents an integer m if there are integers r, s ∈ Z

such that f(r, s) = m. It properly represents m if we can take r, s
coprime.

Exercise 1. A prime that is represented, is necessarily properly repre-
sented.

For instance, one asks which primes are represented by a given form
f . Fermat showed that a prime is represented by the form x2 + y2 if
and only if p = 2 or p = 1 mod 4.

The discriminant of f is defined as

D = disc f = b2 − 4ac = −4 det

(
a b/2
b/2 c

)
For instance

disc(x2 + y2) = −4, disc(x2 + xy + y2) = −3.

Note that
4af(x, y) = (2ax+ by)2 −Dy2

Hence f is definite if and only if D = disc f < 0, and in addition is
positive (resp. negative) definite iff a > 0 (resp., a < 0).
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Note that D = b2 − 4ac ≡ b2 mod 4 so that b is even if and only if
D = 0 mod 4. This was an earlier notion of binary quadratic forms,
in which b was only allowed to be even (so that the matrix Mf had
integer entries), and it was Gauss whose definitions we use.

1.1. Equivalence and proper equivalence. An invertible linear in-
teger change of variables leads to the notion of equivalent forms: Given

A =

(
α β
γ δ

)
∈ GL(2,Z), we set f ◦ A to be the form

(f ◦ A)(x, y) = f(A

(
x
y

)
) = f(αx+ βy, γx+ δy)

We say that f is equivalent to g if g = f ◦ A. This is clearly an
equivalence relation. Recall that for A ∈ GL(2,Z), we have detA =
±1. We say that f and g are properly equivalent if g = f ◦ A with
detA = +1, i.e. if A ∈ SL(2,Z).

Note that equivalent forms represent the same integers: If f(x, y) =

m then (f ◦ A)(A−1
(
x
y

)
) = m.

Exercise 2. Show that the matrix of f transforms under A as

Mf◦A = AT ·Mf · A

Exercise 3. Show that

disc(f ◦ A) = (detA)2 disc f.

Hence equivalent forms have the same discriminant.

Exercise 4. Show that f is primitive if and only if f ◦A is primitive.

From now on we only deal with positive definite forms.
For D < 0, D = 0, 1 mod 4, we denote by h(D) the number of

proper equivalence classes of primitive (integer positive definite binary
quadratic) forms of discriminant D. We call h(D) the “class number”.

First of all, there is always a form of discriminant D, in the “principal
class”, so that h(D) ≥ 1:

• If D = 0 mod 4, take x2 − D
4
y2.

• If D = 1 mod 4, take x2 + xy + 1−D
4
y2.

We shall soon see that h(D) is finite, and how to effectively enumer-
ate all equivalence classes.
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1.2. Reduction theory and finiteness of class numbers. To a
(positive definite integral binary quadratic) form f = [a, b, c] with dis-
criminant D = b2−4ac, we associate a unique point τf ∈ H by requiring
τf to be the unique solution in the upper half-plane (there are exactly
two solutions in C) of

f(τ, 1) = 0

We call such τf ∈ H a “Heegner point”.
Solving the resulting quadratic equation gives

τf =
−b+ i

√
|D|

2a

Note that for a properly equivalent form g = f ◦ A, A =

(
α β
γ δ

)
∈

SL(2,Z), we have

τf =
ατg + β

γτg + δ
= A(τg) ⇔ A(τg) = τg◦A−1

where we now think of A as a Möbius transformation. Indeed, we have

f ◦ A(z, 1) = f(αz + β, γz + δ) = (γz + δ)2f(
αz + β

γz + δ
, 1)

For z ∈ H, we have γz + δ 6= 0 if γ, δ ∈ R so that (f ◦ A)(z, 1) = 0
iff f(αz+β

γz+δ
, 1) = 0. Uniqueness of the solution in the upper half-plane

gives τf = ατg+β

γτg+δ
.

Note that the imprimitive form ef(x, y) (e > 1) has the same root
τef = τf

Lemma 1.1. Let f = [a, b, c], g = [a′, b, c′] be two (positive definite,
integral binary quadratic) forms of the same discriminant D. Then
f = g if and only if τf = τg.

Proof. Since disc f = disc g = D, we have

τf =
−b+ i

√
|D|

2a
, τg =

−b′ + i
√
|D|

2a′

Comparing imaginary parts gives√
|D|

2a′
=

√
|D|

2a

which gives a′ = a, and then comparing real parts gives

− b

2a
= − b′

2a′
= − b′

2a
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so that b′ = b. Finally, c′ = c is determined from

b2 − 4ac = D = b′2 − 4a′c′ = b2 − 4ac′.

�

Corollary 1.2. Two primitive forms f, g of the same discriminant
D < 0 are properly equivalent if and only if the corresponding Heegner
points τf , τg ∈ H are equivalent under SL(2,Z).

Definition. (Lagrange): A primitive (positive definite integral binary
quadratic) form f = [a, b, c] is reduced if the corresponding Heegner
point τf lies in the fundamental domain F . Equivalently, if we have

−a < b ≤ a < c or 0 ≤ b ≤ a = c

As a consequence of our result on the fundamental domain, we obtain

Corollary 1.3. Any primitive form is properly equivalent to a unique
reduced form.

Corollary 1.4. Let D < 0, D = 0, 1 mod 4. The class number h(D)
equals the number of (primitive) reduced forms of discriminant D.

A moral: The imaginary part Im τ =
√
|D|/2a of a reduced Heegner

point is at least
√

3/2 (the lowest point in the fundamental domain),
so that we obtain that

1 ≤ a ≤
√
|D|
3

Moreover, |b| ≤ a ≤
√
|D|
3

, and c is determined by a and b, so that we

find that

Corollary 1.5. h(D) is finite!

Remark: The proof gives h(D) � |D|. One can get a better bound

of order O(
√
|D| log |D|).

Example: Determine all reduced forms of discriminant D = −4:
We need to solve b2−4ac = −4, and that −b+i2

2a
∈ F . So in particular

the imaginary part is at least
√

3/2, or

1

a
≥
√

3

2

which gives 1 ≤ a ≤ 2/
√

3 < 2, hence a = 1 . Also we need |b| ≤ a = 1

so that b = 0,±1 . For b = 0 we get −4 = ·1 · c − 02 = −4 or c = 1,

which gives the principal form x2 + y2.
For |b| = 1 = 1, we must have b ≥ 0, so that b = 1, and so −4 =

12 − 4 · 1 · c which has no solution. Hence h(−4) = 1 .
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Exercise 5. Find the class number h(D) and all reduced forms of dis-
criminant D for all discriminants −12 ≤ D < −4.

Moral: The class number is effectively computable.

Figure 1. A table of class numbers h(d) for discrimi-
nants 1 ≤ −d ≤ 180. Circled are all examples with class
number one (taken from Corentin Perret-Gentil’s MSc
thesis).

Exercise 6. Show that if D = 1 − 4q, q > 1, and h(D) = 1 then q is
prime.

1.3. A reduction algorithm. Recall that a form f = [a, b, c] is re-
duced if it satisfies

−a < b ≤ a < c or 0 ≤ b ≤ a = c

This corresponds to the corresponding Heegner point τf = (−b +√
D)/2a lying the fundamental domain F (Figure 2), with the con-

dition 0 ≤ b ≤ a = c corresponding to points on the boundary arc
|τ |2 = c/a = 1 and Re(τ) = −b/(2a) ≤ 0. Recall that the generators

S =

(
0 1
−1 0

)
and T =

(
1 1
0 1

)
transform a form f = [a, b, c] by

S : [a, b, c] 7→ [c,−b, a]

T n : [a, b, c] 7→ [a, b+ 2a · n, c′], c′ = f(n, 1) = an2 + bn+ c

We can algorithmically transform any form f = [a, b, c] to a reduced
form by the sequence of the following operations:
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Figure 2. The fundamental domain F for SL(2,Z).

(1) If a > c, then apply S to replace f by f ′ = Sf = [c,−b, a] =
[a′, b′, c′]; If −a′ = −c < b′ = −b ≤ a′ = c (i.e. −c ≤ b < c)
then f ′ is reduced - stop. Otherwise move to step 2.

(2) If a ≤ c then apply T−n with the unique n for which b′ = b−2a ·
n ∈ (−a, a], to replace f by f ′ = [a, b′, c′] where b′ = b−2a ·n ∈
(−a, a] and c′ = f(−n, 1) is determined by b′2 − 4ac′ = D. If
c′ > a then f ′ is reduced - stop. If c′ < a move to step 1.
Otherwise, i.e. if c′ = a, move to step 3.

(3) If a = c and −a < b < 0, apply S to replace f = [a, b, a] by
f ′ = [a,−b, a]. Now f is reduced - stop.

Example: Take f = [6, 7, 6], which has discriminant D = −95 (note
that h(−95) = 8). Apply step 2 (with n = 1) to replace f by [6, 7 −
2 · 6 · 1, c′] = [6,−5, 5]. Apply step 1 to replace by [5, 5, 6] , which is

reduced.
Example: Take f = [16, 23, 9] which has discriminant D = −47 (note

that h(−47) = 5).

[16, 23, 9]
step 1−−−→ [9,−23, 16]

step 2−−−→
n=−1

[9,−23 + 2 · 9 · 1, c′] = [9,−5, 2]

step 1−−−→ [2, 5, 9]
step 2−−−→
n=1

[2, 5− 2 · 2 · 1, c′] = [2,1,6]

which is reduced.
Note: At each step, we either reduce a (but keep it positive) or if

not, we either reduce |b| or at the last step change the sign of b. So the
algorithm terminates.
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Exercise 7. Decide which of the following forms are equivalent:

[6, 12, 7], [3, 6, 5], [5, 14, 11].

1.4. Ideal theory in imaginary quadratic fields. The theory of
binary quadratic forms runs parallel to ideal theory in quadratic fields.
We focus on the positive definite case, corresponding to imaginary qua-
dratic fields.

Let K = Q(
√
d) = Q1 + Q

√
d, where d < 0 is squarefree, be an

imaginary quadratic field. This is a 2-dimensional field extension of Q.
The ring of integers OK is defined as the set of all elements of K

which are roots of monic integer polynomials. It is a computation that

OK = Z[wK ] = Z1 + ZwK
where

wK =

{√
d, d 6= 1 mod 4

1+
√
d

2
, d = 1 mod 4

The discriminant of K is defined as

DK =

{
4d, d 6= 1 mod 4

d, d = 1 mod 4

so that DK = 0, 1 mod 4.
So for instance the discriminant of Q(

√
−1) is −4, and of Q(

√
−3)

is −3.
An intrinsic definition of the discriminant is as the discriminant of

the “trace form” of OK , which is the quadratic form Q : OK×OK → Z
given by Q(x, y) = trK/Q(xy).

The discriminants of quadratic fields are called “fundamental dis-
criminants”, and are characterized as integers D = 0, 1 mod 4 of the
form either D = 1 mod 4 and squarefree, or D = 4m where m =
2, 3 mod 4 is squarefree.

A nonzero ideal I ⊂ OK has a norm, defined as

N(I) = #OK/I <∞
For instance, for a principal ideal I = (α), with 0 6= α ∈ OK , we have
N((α)) = NK/Q(α) = α · ᾱ.

Any ideal I ⊂ OK is itself a rank-2 lattice, so has an integral basis
I = Zα+Zβ. The choice of bases gives a quadratic form N(xα+yβ) =
ax2 + bxy + cy2, whose coefficients are all divisible by the norm N(I)
of the ideal, and the integral quadratic form

Qα,β(x, y) :=
NK/Q(xα + yβ)

N(I)
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is a primitive integral quadratic form, whose discriminant is DK = d
or 4d, the discriminant of the field K = Q(

√
d). For instance, for the

unit ideal I = OK , where N(OK) = 1, taking the basis OK = 〈1, wK〉
gives the principal form

Q(x, y) = N(x+ ywK) = x2 + (w + w̄)xy +NK/Q(w)y2

=

{
x2 − dy2 = x2 − DK

4
y2, DK = 0 mod 4

x2 + xy + 1−DK

4
y2, DK = d = 1 mod 4

We say that an ordered basis I = [α, β] is positive if

αβ̄ − ᾱβ√
D

> 0

It turns out that different (positive) bases give rise to (properly)
equivalent quadratic forms, so that an ideal I gives us a well-defined
(proper) equivalence class [QI ] of binary quadratic forms, and that
two ideals which are in the same ideal class (that is (α) · I = (β) ·
J for α, β ∈ OK) give the same class; and inequivalent ideals give
inequivalent forms.

Conversely, to a positive definite primitive form ax2 + bxy+ cy2 with
fundamental discriminant DK , we associate the ideal (with positive
basis)

I = [a,
b−
√
DK

2
] ⊆ OK

Exercise 8. check that I = Za+ Z b−
√
DK

2
as above is an ideal of OK,

with a positive ordered basis.

In this way we get a bijection

ideal classes in OK ↔ (proper) equivalence classes of

positive definite forms of discriminant DK

Consequently we find that OK has unique factorization into irre-
ducibles (is a Principal Ideal Domain) if and only if h(DK) = 1.

1.5. An example of a non PID. As an example, consider the field
Q(
√
−6), which has discriminant D = −4 · 6 = −24. The ring of

integers is OK = Z[
√
−6], and the units are O×K = {±1}. We check

that there is no unique factorization by observing that

6 = 2 · 3 = −(
√
−6)2
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We claim that 2, 3,
√
−6 are irreducible and are clearly non-associate

(as the units are ±1) so we get a non-unique factorization into irre-
ducibles. To see that for instance 2 is irreducible, suppose we have a
factorization 2 = αβ with α, β 6= ±1. Then taking norms gives

4 = N(2) = N(αβ) = N(α)N(β)

and since N(α) 6= 1 as α is not a unit, we must have N(α) = N(β) = 2.
But if α = x+ y

√
−6, with x, y ∈ Z then

2 = N(α) = x2 + 6y2

which by inspection has no integer solutions. Hence Z[
√
−6] is not a

PID.
A computation by reduction theory shows that the class number is

h(−24) = 2. The reduce forms are the principal form [1, 0, 6] (corre-
sponding to to the principal ideal class), and [2, 0, 3].

1.6. The class number one problem. Using the correspondence and
reduction theory, we can quickly check several discriminants and obtain
9 imaginary quadratic fields Q(

√
d) with unique factorization (class

number one), namely those with

d = −1,−2,−3,−7,−11,−19,−43,−67,−163

of these, it can be shown that only the first five are Euclidean: d =
−1,−2,−3,−7,−11 (and in fact are Euclidean w.r.t. the norm).

Gauss’ class number one problem was to show that these 9 fields are
the only imaginary quadratic fields with class number one.

Assuming GRH there is an effective c > 0 so that h(D) > c
√
|D|/ log |D|

(Hecke/Landau 1918), so that on GRH Gauss’ problem is easy.
Heilbronn (1934) showed that h(D)→∞ as D → −∞, so that there

are only finitely many imaginary quadratic fields of class number one.
This was done by combining work of Deuring, Mordell and Heilbronn
to obtain the the falsity of GRH implies h(D)→∞ as D → −∞, with
the effective lower bound obtained from GRH.

Heilbronn and Linfoot (1934) showed that there are at most 10 imag-
inary quadratic fields of class number one (9 were known to Gauss).

Siegel (1935) showed unconditionally that h(D) �ε |D|1/2−ε for all
ε > 0, but his constant was not effective so cannot be used to check
that we have obtained all fields with class number one.

The class number one problem was finally settled by Stark (1967)
and Baker (1966) (Kurt Heegner seemed to have the correct proof in
1952 but was not believed at the time).


